构建数据资产估值体系 推进数据要素市场化

瞭望智库与中国光大银行近日联合发布了《商业银行数据资产估值白皮书》(下称《白皮书》),系统研究了金融领域尤其是商业银行的数据资产估值体系建设。

《关于构建更加完善的要素市场化配置体制机制的意见》将数据列为与土地、劳动力、资本、技术并列的生产要素。数据作为新型生产要素,其巨大的经济价值、社会价值已经得到普遍认可。

瞭望周刊社党委常委、副总编辑苏会志指出,估值是数据市场建设的基础工作之一。解决这个难题,既要建立政府主导下的数据确权机制,也需要学术界提出价值评估体系,经由市场机构的实践验证,才能形成说得清、看得懂、用得好的估值体系,推动数据要素市场前进一大步。

《白皮书》首先对数据资产进行了定义,即为企业过去的交易或事项形成的、由企业合法拥有或控制的、预期在未来一定时期内能为企业带来经济利益的、以电子方式记录的数据资源。《白皮书》指出,相比于传统有形资产,数据资产具有非实体性、无消耗性、零成本复制性和依托性等特点,因此需要全面评估其使用成本,不能套用现有办法。

《白皮书》认为,由于数据资产具备可加工性、可衍生性、可共享性,因此在评估其经济利益时,需将数据资产加工、衍生、共享所可能产生的收益考虑其中。同时,技术的发展、相关政策的变化、应用场景的丰富等因素变化,使得数据资产的价值也随之改变,且变化程度较为明显。

中国光大银行副行长杨兵兵指出,数据确权是数据要素流通的前提,数据定价是数据要素流通的基础,数据交易是数据要素流通的关键。光大银行聚焦在数据资产估值领域深入研究,建立了面向商业银行的数据资产估值体系和方法,并完成首次数据资产价值计算。

结合数据资产的特点,《白皮书》展示了商业银行如何构建和优化数据资产估值方法体系。以营销类模型为例,《白皮书》提到,在大数据营销类模型应用之前,银行业务人员主要通过地毯式营销将相关产品推荐给一类客群。这种粗放式营销,一方面会导致有限的营销资源被过度分散,另一方面无法有效满足不同客户的差异化购买偏好,导致营销转化率低。

“数据资产价值的计算方法,就像我们解一道应用题,使用最朴素的、都能理解的方法,就是先确定‘算什么’,再知道‘怎么算’,最后采集数据、代入公式得到最终的价值。”中国光大银行信息科技部总经理史晨阳总结。

构建数据资产估值体系的终极目标,是推动数据要素市场化发展。这需要两方面工作:一是打破部门壁垒、地方壁垒、行业壁垒,真正实现数据共享;二是有效约束市场行为,该监管时要监管。

《白皮书》对数据要素市场的科学有效发展提出了以下建议:一方面,通过积极的政策激发数据要素市场活力。包括推进和完善顶层设计,使数据市场发展有法可依;确定数据要素流通角色,保护数据流通相关方权利;研究制定多样化的支持政策,促进各主体数据共享意愿;通过产学研一体化研究推动新技术在数据要素流通中的创新使用;建立社会公共数据共享流通的机制,活跃市场交易;建立试点机制,允许先行先试,逐步完善市场;鼓励开展多种数据市场模式等。

另一方面,制定市场规则,审慎包容指导市场有序发展。包括鼓励行业开展自律,形成行业协同监管局面;建立交易争端仲裁机制,完善市场运营机制;建立数据共享标准,提升数据共享效率;建立指导定价机制,促进市场有序良性竞争;建立全新监管理念,维护数据要素市场秩序等。

标签:    资产   数据   市场   经济  
来源:经济参考报
编辑:GY653

免责声明:本网站内容主要来自原创、合作媒体供稿和第三方自媒体作者投稿,凡在本网站出现的信息,均仅供参考。本网站将尽力确保所提供信息的准确性及可靠性,但不保证有关资料的准确性及可靠性,读者在使用前请进一步核实,并对任何自主决定的行为负责。本网站对有关资料所引致的错误、不确或遗漏,概不负任何法律责任。任何单位或个人认为本网站中的网页或链接内容可能涉嫌侵犯其知识产权或存在不实内容时,应及时向本网站提出书面权利通知或不实情况说明,并提供身份证明、权属证明及详细侵权或不实情况证明。本网站在收到上述法律文件后,将会依法尽快联系相关文章源头核实,沟通删除相关内容或断开相关链接。

  • 相关推荐